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Analysis of combustion instabilities relies in most cases on linear analysis but most
observations of these processes are carried out in the nonlinear regime where the
system oscillates at a limit cycle. The objective of this paper is to deal with these
two manifestations of combustion instabilities in a unified framework. The flame
is recognized as the main nonlinear element in the system and its response to
perturbations is characterized in terms of generalized transfer functions which assume
that the gain and phase depend on the amplitude level of the input. This ‘describing
function’ framework implies that the fundamental frequency is predominant and that
the higher harmonics generated in the nonlinear element are weak because the higher
frequencies are filtered out by the other components of the system. Based on this
idea, a methodology is proposed to investigate the nonlinear stability of burners by
associating the flame describing function with a frequency-domain analysis of the
burner acoustics. These elements yield a nonlinear dispersion relation which can be
solved, yielding growth rates and eigenfrequencies, which depend on the amplitude
level of perturbations impinging on the flame. This method is used to investigate
the regimes of oscillation of a well-controlled experiment. The system includes a
resonant upstream manifold formed by a duct having a continuously adjustable
length and a combustion region comprising a large number of flames stabilized on
a multipoint injection system. The growth rates and eigenfrequencies are determined
for a wide range of duct lengths. For certain values of this parameter we find a
positive growth rate for vanishingly small amplitude levels, indicating that the system
is linearly unstable. The growth rate then changes as the amplitude is increased
and eventually vanishes for a finite amplitude, indicating the existence of a limit
cycle. For other values of the length, the growth rate is initially negative, becomes
positive for a finite amplitude and drops to zero for a higher value. This indicates
that the system is linearly stable but nonlinearly unstable. Using calculated growth
rates it is possible to predict amplitudes of oscillation when the system operates on
a limit cycle. Mode switching and instability triggering may also be anticipated by
comparing the growth rate curves. Theoretical results are found to be in excellent
agreement with measurements, indicating that the flame describing function (FDF)
methodology constitutes a suitable framework for nonlinear instability analysis.

1. Introduction
Research on combustion instabilities is quite intense worldwide but prediction of

these processes at the design stage still constitutes a challenge. Instability problems
affect a wide variety of systems ranging from domestic boilers to gas turbines for
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electricity and power generation, large thermal plants, ramjets and rocket engines.
They cause structural vibrations, augmented heat fluxes to the chamber walls,
reducing the system lifetime and often leading to severe damage. Combustion
oscillations are particularly harmful for jet engines and in extreme cases lead to
spectacular failures, unfortunately, these regimes of operation are promoted by new
combustion technologies in which fuel and air are premixed before burning. These
novel premixing systems lead to low levels of pollutant emissions but also favour
combustion/acoustics interactions and are therefore susceptible to resonant coupling
and instabilities (Lieuwen & Yang 2005). One central difficulty in the analysis of
combustion instabilities in most practical systems is related to the nonlinear flame
dynamics. Manifestations of these nonlinearities are well-documented on the basis
of observations on laminar or turbulent flame configurations but there are fewer
direct quantitative comparisons between experiments and theory. The theoretical
interpretation is usually based on linear stability analysis in which one examines
the growth rate of infinitesimally small perturbations, but in most cases experiments
on self-sustained instabilities are carried out on systems which have reached a limit
cycle at a finite level of oscillation. In some special cases it has been possible to
measure the linear growth rate, for example by making use of active control methods
(Poinsot et al. 1988, 1992) allowing a comparison between theory and experiment.
But in most investigations the instability development cannot be controlled and a
linear analysis is carried out to define the stability map. This has been applied to
many simple experiments and more recently to practical configurations, taking into
account their geometrical and flow complexities, as for example by Paschereit et al.
(2002), Sattelmayer (2003), Krebs et al. (2005) or Roux et al. (2005). These studies
include predictions of small-perturbation growth rates while experiments correspond
to well-established oscillations. There is clearly a gap between theoretical results and
experimental data. A relatively large number of studies however have tried to fill this
gap and propose nonlinear descriptions of combustion instabilities.

In a first group of investigations, the focus has been on solid-propellant rocket
engines and on developments of nonlinear acoustics to describe the non-steady
gasdynamics. These studies are based on expansions of the acoustic eigenmodes
such as initially introduced by Zinn & Lores (1972). This framework has been
extensively explored by Culick and coworkers mainly in relation to solid-propellant
rockets. Typical examples of this approach provide an explanation of the saturation
phenomenon observed when the oscillation reaches a limit cycle (Yang, Kim & Culick
1990; Culick 1994; Jahnke & Culick 1994; Burnley & Culick 1999). These studies
remain in most cases essentially theoretical, probably because it is not easy to develop
systematic experiments in this area. Much of this theoretical effort has focused on
nonlinearities associated with gasdynamics while the nonlinear combustion dynamics
are less well investigated. It has been pointed out by these authors that nonlinear
acoustics could not provide an explanation of the nonlinear onset of instabilities
designated as ‘triggering’. A recent evolution has therefore consisted of establishing a
nonlinear model for the solid-propellant response to derive conditions for triggering.
This phenomenon is demonstrated theoretically by Culick, Burnley & Swenson (1995),
Wicker et al. (1996) or Ananthkrishnan, Deo & Culick (2005).

A second group of studies is generally concerned with instabilities in gas turbine
combustors and emphasizes the flame dynamics. It is indicated that many of the
features of combustion instabilities are controlled by nonlinearities of the flame as
underlined for example by Peracchio & Proscia (1999) or Lieuwen (2002). This is
exemplified by experimental observations of saturation of heat release oscillations
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(e.g. Lieuwen & Neumeier 2002; Lee & Santavicca 2003; Balachandran et al. 2005;
Bellows et al. 2007; Birbaud et al. 2007). The nonlinear flame dynamics has also been
described theoretically with models of the unsteady flame motion (Poinsot & Candel
1988). The nonlinearity induced by flashback of a ducted flame is elegantly described
in a model put forward by Dowling (1999). Nonlinear models which rely on the
kinematic description of initially conical flames subjected to finite level perturbations
have been developed by Lieuwen (2005). Simplified descriptions of the nonlinear
gain of the flame are exploited by Dowling (1997) and various types of numerical
simulations have been used to examine finite-amplitude motions (e.g. Armitage et al.
2006).

The present study belongs to a third group of investigations. The aim of that
group is to include the nonlinear flame dynamics features in a complete combustion
instability analysis. Notable are the works of Dowling (1997, 1999) and Morgans &
Stow (2007). These references do not, however, contain the nonlinear description of
the flame response delay – it is shown in the present paper that this is a key element –
and are not supported by experimental validations. A nonlinear-heat-release acoustic
model is proposed by Peracchio & Proscia (1999) to describe observations made in
a representative model-scale combustor, but this application of nonlinear analysis
features adjustment parameters and the experimental validation is limited because
the test rig has a fixed geometry. Balasubramanian & Sujith (2008) have recently
demonstrated theoretically that in the case of diffusion flames, such nonlinear onset
can be analysed in the time domain by considering both the nonlinearity of the flame
response and the nonnormality of the coupled eigenmodes.

Note also that other nonlinear interactions of parametric type can arise between a
flame and its sound field when the front propagates downwards in premixed reactants
confined in a tube (Searby & Rochwerger 1991 and Wu et al. 2003). This special
type of nonlinear coupling linked to intrinsic instabilities differs from the system
instabilities envisaged in the present article.

As indicated by Lawn, Evesque & Polifke (2004) and by many of the previously
listed authors, further studies of the mechanisms of flame response are needed to
understand the nonlinear combustion instability processes. The objective of the present
paper is to develop one such analysis which may be employed to predict amplitudes of
oscillation at the limit cycle and explain mode switching and instability triggering phe-
nomena. More precisely, the aim is to (i) quantitatively predict limit cycles amplitude
and frequencies, (ii) predict hysteresis phenomena, (iii) determine frequency shifts
during transients, (iv) explain finite-amplitude triggering and (v) give an explanation
for the linear and nonlinear onset, and different processes leading to saturation.

The analysis is illustrated in a well-controlled experimental configuration (Noiray
et al. 2006, 2007). A theoretical analysis of the thermoacoustic coupling has already
been carried out from a linear point of view in these previous studies. The results
provide suitable estimations of the unstable frequencies but the model does not explain
how and why limit cycles are reached. Indeed, the linear representation predicts infinite
growth of initial perturbations which is naturally not the case in practical systems.

A nonlinear analysis should be developed to account for saturation phenomena.
This is accomplished here by making use of the describing function framework which
is well-established in nonlinear control but less common in combustion dynamics
studies (see Culick 2006, appendix H). The central idea is to define a flame transfer
function which depends on both input frequency and amplitude. In this approach one
assumes that the fundamental frequency determines the dynamics of the system while
higher harmonics generated in the nonlinear process are of sufficiently low amplitude
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to have a negligible effect on the system stability. This can be so for a number of
reasons: (i) the nonlinearity is weak, (ii) the higher harmonics are filtered out by the
other components of the system, (iii) the fundamental conveys the major part of the
power.

When the describing function is employed to represent the flame response it is
possible to perform a frequency-domain analysis by solving the dispersion relation for
a range of amplitudes. This nonlinear dispersion relation (NDR) yields growth rates
and eigenfrequencies which depend on the amplitude level of perturbations impinging
on the flame. This notably differs from the standard linear stability analysis which
only yields constant growth rates and frequencies.

In the present study, the ‘flame describing function’ or FDF is used to systematically
investigate regimes of oscillation of a well-controlled experiment. The system
comprises a resonant upstream manifold formed by a duct having a continuously
adjustable length to modify the burner acoustics. This approach will be shown to
yield meaningful results. In one early investigation of combustion–acoustics coupling,
Crocco, Grey & Harrje (1960) also used a chamber with a variable size in the context
of rocket instabilities. In the present study, the combustion region is unconfined and
comprises a large number of flames stabilized on a multipoint injection system. The
adjustable duct length L is used as a bifurcation parameter to identify the various
modes of oscillation and extract the system bifurcation diagram.

This paper begins with a brief presentation of the experimental setup. The instability
analysis is reviewed and the dispersion relation is obtained. Flame transfer functions
corresponding to different input levels are determined by subjecting the flames
to acoustic perturbations and sweeping the frequency for a range of modulation
amplitudes. This yields the flame describing function which is then inserted in the
dispersion relation. This equation is solved, providing growth rates as a function of
amplitude. Results obtained for different input levels are then used to predict limit-
cycle amplitudes and compare these predictions with experimental data. The last
section is concerned with mode switching and instability triggering. One case of mode
transition is described in detail. It is shown that this phenomenon can be explained by
examining the evolution of growth rates for the possible modes of resonance corres-
ponding to a particular size of the upstream manifold. A bifurcation diagram is then
proposed which synthesizes theoretical predictions and experimental observations.

2. Experimental setup and combustion regimes
The experimental layout is sketched in figure 1. The combustion zone (see figure 2)

is unconfined and the thermo-acoustic coupling described here involves a feedback
loop between a collection of flames and the upstream manifold. The three main
elements of the burner are a perforated plate which serves to anchor the flames, a
resonant cavity and a piston from which the premixture is injected. Such multipoint
injection geometries are used in many applications (domestic boilers, drying systems,
some novel gas turbine concepts, etc.). The head of the piston is flat providing a
quasi-perfect acoustic reflection boundary at the bottom of the burner. It is easy to
modify the resonant cavity size L (and thus the acoustic properties of the burner) by
changing the piston position. The length L used in this investigation as a bifurcation
parameter takes values from 10 to 75 cm. The resonant duct radius R = 3.5 cm
is small enough to assume that wave propagation is longitudinal in the upstream
duct for frequencies lower than 1500 Hz. At ambient conditions, the corresponding
wavelengths λ= c/f exceed 23 cm, which is much larger than the duct radius R.
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Figure 1. Experimental setup. The burner is sketched on the left. A close-up view of the flames
anchored on the perforated plate is displayed on the right. Three quantities are measured in
the present study: acoustic pressure by means of microphone M1 placed 35 cm from the burner
axis in the horizontal plane containing the perforated plate; OH∗ light emission by means
of a photomultiplier equipped with a bandpass filter; and flow velocity perturbation with a
hot-wire probe mounted 2 cm below the perforated plate inside the manifold.

(a)

(b) (c) (d)

(g) ( f) (e)

Figure 2. Instantaneous flame images taken from the side. (a) Stable combustion regime,
cavity length L = 26.4 cm, radiated noise level 80 dB (Microphone M1). (b–g) Unstable
combustion regime. Six images are recorded during a cycle at regularly spaced instants. Cavity
length L =46 cm, oscillation frequency f = 522 Hz, radiated noise level 111 dB (Microphone
M1).

The premixed reactants flow from the piston to the perforated plate where
reaction takes place. Volume flow rate and equivalence ratio are respectively fixed at
4.5×10−3 Nm3 s−1 and 0.86 providing a thermal power of 14 kW. The perforated plate
made of stainless steel has a thickness l =3 mm and comprises regularly distributed
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Figure 3. Temporal evolution of (a) the velocity, (b) OH∗ light emission and (c) acoustic
pressure, respectively recorded by an upstream hot-wire probe, a photomultiplier and
microphone M1 (see figure 1). The unstable combustion regime corresponds to a cavity
size L = 46 cm and the oscillation frequency f =522 Hz.

holes of radius rp = 1 mm. Holes have been machined on a 3 mm square mesh and
the plate features N = 420 perforations with a global porosity P =Nπr2

p/πR2 of 0.34.
Combustion regimes are either ‘stable’ or ‘unstable’ depending on the duct size L.

Stable regimes correspond to a steady mode of burning characterized by a low level
of noise emission with individual flames taking classical conical shapes and remaining
still (figure 2a). The noise level radiated by the system in this case is approximately
80 dB (reference pressure 2 × 10−5 Pa) measured by microphone M1. Unstable regimes
pertain to an oscillation of finite amplitude. A typical example is given in figure 2(b–g).
The system operates in this case on a limit cycle (stable oscillatory state). In this
unsteady mode, individual flame sheets periodically stretch and recoil at a frequency
close to one of the burner acoustic eigenfrequencies. The case presented in figure 2
corresponds to an oscillating limit cycle obtained for a burner size L = 46 cm. In this
situation, the frequency f = 522 Hz is close to the three-quarter wave eigenfrequency
of the burner 3c/4L = 554 Hz where c = 340 m s−1 designates the speed of sound in
the fresh stream at ambient temperature. The flame-front oscillation is accompanied
by an intense sound emission exceeding 110 dB at microphone M1. This radiated
sound is generated by the rapid fluctuations of the flame fronts during the oscillation
cycle (figure 2b–g). The flame surface motion induces strong fluctuations of the
volumetric gas expansion through the flames fronts, which act like a distribution of
acoustic sources.

Time records of the different quantities measured in the present study are displayed
in figure 3 for the unstable combustion regime obtained for L = 46 cm (see figure 2b–g).
The flow velocity measured by the hot-wire probe placed 2 cm below the perforated
plate (see figure 1) is plotted in figure 3(a). Light intensity radiated by OH∗ radicals
formed in the flame and acoustic pressure recorded by microphone M1 are displayed
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Figure 4. Qualitative representation of the resonant coupling mechanisms.

in figures 3(b) and 3(c). These signals are respectively detected by a photomultiplier
equipped with a filter centred on the OH∗ emission band around 308 nm and
microphone M1 placed 35 cm away from the burner axis. Combustion is ignited by a
spark which produces a small impulse in the pressure signal in figure 3(c) at t � 0.06 s.
Ignition occurs with a burst of light from t � 0.06 to t � 0.08 s (see figure 3b). At
that time, flames are well-anchored on the burner outlet and small oscillations of
the acoustic pressure (figure 3c), OH∗ light emission (figure 3b) and flow velocity
inside the upstream manifold (figure 3a) begin to grow. It takes about 70 ms to reach
the limit cycle at a relatively fast rate corresponding approximately to 40 periods.
The saturation amplitude of the acoustic pressure is about p′

rms = 6.9 Pa which is
equivalent to a sound pressure level of 111 dB (SPL(dB) = 20 log10(p

′
rms/pa) where

pa =2 × 10−5 Pa is the reference pressure).

3. Analytical modelling
It is useful to derive an analytical model of the thermoacoustic coupling first, which

can be used to retrieve experimental observations and will provide a basis for the
nonlinear analysis. A qualitative description of the resonant coupling is put forward
first. This is followed by analytical modelling of the main processes involved in the
instability phenomenon. A dispersion relation is finally obtained by making use of
these results. In this linear analysis, flow variables are written as sums of a mean and
a fluctuating component a = ā + a′. In the frequency-domain analysis the fluctuating
quantities are treated as harmonic perturbations and cast in the conventional form:
a′ = |a′|e−iωt , where ω = ωr +iωi denotes the complex angular frequency with ωr = 2πf

and ωi respectively defining the angular frequency and the growth rate. For positive
values of ωi the perturbation grows, while it decays in the opposite case.

3.1. Qualitative description of the thermo-acoustic instability

The resonant coupling mechanism is represented schematically in figure 4. In the
present configuration the flames move in response to upstream velocity fluctuations
u′ impinging on the flames as indicated on the left-hand side in the figure. These flow
rate fluctuations affect the flame surface area, inducing heat release rate fluctuations

Q̇
′
. The flame response to incoming velocity perturbations has been extensively

investigated in analyses of flame transfer functions. The resulting heat release rate
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fluctuations Q̇
′
induce unsteady gas expansion fluctuations which generate acoustic

pressure oscillations p′. Combustion noise associated with this process is again well-
documented in the literature. Pressure fluctuations are radiated over all space and in
particular back to the upstream manifold through the perforated plate. This gives rise
to a feedback effect which is sustained by the upstream duct resonance. This process
links pressure p′ and velocity u′ fluctuations at the burner outlet.

The different mechanisms listed previously are now used to derive a dispersion
relation which defines the system dynamics. The following derivation is based on the
analysis proposed by Schuller, Durox & Candel (2003a) and Noiray et al. (2006).
Note that the present work includes a more detailed description of the pressure
field radiated by the flame collection than that presented by Noiray et al. (2006). In
addition, the flame transfer function (FTF) will be replaced by the flame describing
function (FDF) to provide a nonlinear description of the thermo-acoustic coupling.

3.2. Burner acoustics

In a first approximation, the burner may be treated as an acoustically open-ended
tube. The piston offers a quasi-perfect rigid boundary and the perforated plate
fixed at the top of the manifold barely modifies the system eigenfrequencies. In the
low frequency range considered in this study only longitudinal waves propagate in
the duct. The link between acoustic velocity u′ and pressure fluctuations p′ at the
burner outlet is deduced from a classical analysis of duct acoustics (e.g. Rienstra &
Hirschberg 2005). The fluctuating velocity u′

up and pressure p′
up on the upstream side

of the perforated plate (see figure 1) are related by

p′
up = −iρc cotan

(
ωL

c

)
u′

up, (3.1)

where ρ denotes the fresh-stream density. In the absence of the perforated plate, the
duct would feature perfect quarter-wave-type eigenmodes with a pressure node and
velocity anti-node at the outlet. This would correspond to p′

up = 0 in (3.1), yielding

a set of eigenfrequencies defined by f (n) = (2n − 1)c/4L, where n is an integer. The
corresponding modes 1, 2 and 3, . . . respectively refer to the quarter (n= 1), three-
quarter (n= 2) and five-quarter (n= 3) wave eigenmodes.

It is not difficult to modify this initial description by including the perforated plate
dynamics. Considering its high porosity P , the plate only slightly perturbs the duct
response. Assuming that the plate is acoustically compact and that acoustic velocity
perturbations remain constant in the perforations, a balance of mass through this
element yields:

u′
up = Pu′. (3.2)

The perforated-plate acoustics may be represented in terms of the bias flow aperture
conductance derived by Howe (1979). In that study, the acoustic properties of the
perforations are determined by the vortex shedding occurring at the downstream side
of the perforations lips. In the present situation, flames are directly anchored on the
plate, inhibiting vortex roll-up (see figure 1). It is thus more suitable to use another
classical model derived by Melling (1973), which is based on a linearization of a
Navier–Stokes description of the flow inside each individual channel. In the frequency
domain, this yields a relation that links the fluctuating pressure drop across the plate
and velocity fluctuations inside the holes:

p′ − p′
up = i ωρl

[
1 +

lν

rp

(1 + i)

]
u′, (3.3)
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where lν = (2ν/ω)1/2 stands for the viscous acoustic boundary layer thickness and ν

is the kinematic viscosity. Mean flow effects are not taken into account in (3.3) but
the bulk oscillation of the gas column inside the holes resulting from the unsteady
pressure gradient on both sides of the plate is accounted for. Combining (3.1), (3.2)
and (3.3), it is possible to link acoustic pressure and velocity at the burner outlet on
the downstream side of the plate:

p′ = iρc

(
ωl

c

[
1 +

lν

rp

(1 + i)

]
− P cotan

(
ωL

c

))
u′. (3.4)

3.3. Flame transfer function

Dynamics of flames have been studied for many years in relation to instability
problems of a variety of practical systems (e.g. Crocco 1951). Some recent
investigations deal with the flame transfer function analysis (Fleifil et al. 1996;
Ducruix, Durox & Candel 2000; Schuller, Durox & Candel 2003b). The flame
transfer function relates the response to incoming acoustic modulations in terms
of heat-release-rate fluctuations as function of the excitation frequency f or angular
frequency ωr = Re(ω) = 2πf , for a fixed input level. It is defined by the ratio of the
relative variations of the global heat release rate to the relative perturbation velocity
at the base of the flame:

F =
Q̇

′
/ ¯̇Q

u′/ū
. (3.5)

This function may be expressed in terms of its gain G = |F| and phase ϕ = arg(F). For
the case of complete premixed combustion encountered in the present configuration,
the flame surface (as well as the flame light emission) is directly proportional to the
heat release rate (Keller & Saito 1987). Setting A as the flame surface of one of the
N flames, one can write

F(ωr ) =
A′/Ā

u′/ū
= G(ωr ) eiϕ(ωr ). (3.6)

3.4. Combustion noise radiation

The sound pressure radiated by the reactive region may be deduced from classical
results of combustion noise theory (e.g. Hurle et al. 1968; Price, Hurle & Sudgen 1968;
Strahle 1978). For perfectly premixed combustion where all the reactive mixture at
the burner outlet enters the reaction zone, it is possible to express the pressure
perturbation as a function of the flame surface A, assuming that the laminar burning
velocity SL is constant (Abugov & Obrezgov 1978; Clavin & Siggia 1991; Joulin &
Sivashinsky 1991):

p′(x, t) =
ρ(E − 1)SL

4π|x|

(
dA

dt

)
t−τx

. (3.7)

In this expression E = ρu/ρb denotes the volumetric gas expansion through the flame
front. For a methane–air mixture at an equivalence ratio of 0.86 injected at ambient
pressure and temperature, this ratio takes a value of 7.07 and the laminar burning
velocity is SL = 0.31m s−1. The delay τx = |x|/c is associated with acoustic propagation
over the distance |x|. This expression was recently checked for premixed flames
subjected to upstream velocity modulations (Schuller, Durox & Candel 2002).
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In the present configuration, the multiple flames may be treated as a collection
of N acoustic monopoles spreading over a 3 mm square mesh located at a height
h � 8 mm from the burner outlet (see figure 1). This distance h corresponds to the
pinch points of the individual flame fronts during unstable operation. These points
are the locations of greatest variation of volumetric consumption rate in the flame.
The contributions of the different flames should be added to give the acoustic pressure
p′ produced by the unsteady combustion process at the burner outlet. The following
development improves the crude estimate used in previous analysis (Noiray et al.
2006, 2007) where contributions of neighbouring flames to the net sound pressure
level at the perforation outlets were omitted. In reality, the acoustical pressure at a
point x results from the coherent addition of elementary contributions radiated by
each flame. For large wavelengths λ� R and large distances |x| � R, the pressure
field estimate used by Noiray et al. (2006, 2007) is justified because the collection of
flames acts as a compact source zone and is considered in the far-field region. In
contrast, if the field is to be evaluated at a position x in the near-field one has to sum
the contributions of the different flames. This is precisely the case when x is in the
the exit plane of the perforated plate. The pressure field at such a point is given by

p′(x, t) =

N∑
k=1

p′(dx,k, t) =

N∑
k=1

ρ(E − 1)SL

4πdx,k

(
dA′

k

dt

)
t−τx,k

, (3.8)

where dx,k is the distance between the kth flame noise source positioned at a height h

from the perforated plate and the point x located on the exit plane of the perforated
plate. Observations show that under unsteady operation, flames oscillate in phase
with the same amplitude (see figure 2). Equation (3.8) can thus be simplified by
taking the flame surface fluctuation as the same for all flames A′

k = A′. Since the
acoustical wavelength is much larger than the greatest distance dx,k (which only
slightly exceeds the burner diameter) it is possible to neglect the propagation delays
τx,k and assume that all the elementary contributions are in phase. This leads to the
simplified expression:

p′(x, t) =
ρ(E − 1)SL

4πDx

(
dA′

dt

)
t

where
1

Dx
=

N∑
k=1

1

dx,k

. (3.9)

The function 1/Dx is nearly constant with respect to x and a suitable estimate of the
pressure field may be simply obtained by averaging this function over the plate. It
is convenient to introduce an efficiency factor α =h/D = h〈D−1

x 〉 and write the mean
pressure fluctuation p′ on the downstream side of the perforated plate in the form

p′(t) � ρ(E − 1)SL

4πh
α

(
dA′

dt

)
t

where α =
h

D
= h

〈
D−1

x

〉
. (3.10)

The coefficient α accounts for the collective effect of the N flames and defines the near-
field radiation efficiency of this collection. Numerical calculations were performed to
evaluate α (see figure 5). This figure shows that the amplitude of the radiated
back pressure, which is proportional to α, depends on the location on the plate
x = (x/R, y/R, 0). Taking the mean value integrated over the plate surface yields
a factor α = 120 (see figure 5) which indicates that near the perforated plate, the
resulting acoustical pressure is 120 times that induced by a single flame over this
point. If all the N = 420 monopole sources were at large distance from the burner
outlet they would all contribute (α =N), but here near-field effects yield a lower value
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Figure 5. Numerical computation of the collective effect coefficient α. (a) A three-dimensional
representation of the field h/Dx and (b) a profile taken along the radius in the x-direction
together with α. The perforation arrangement (and thus the flame locations) is shown below
the three-dimensional plot in (a).

α = 120 corresponding to a reduced efficiency 120/420 � 0.3. Note that in figure 5
the ratio h/Dx is maximum, as expected, at the centre of the plate and minimum on
the edges. It is also important to note that the evolution of h/Dx along a radius is
smooth, justifying the approximation (3.10) used to obtain an equivalent acoustical
pressure. As a final remark, the distance h is small but big enough to completely hide
the discrete source distribution and yields an axisymmetrical shape. In the frequency
domain, (3.10) yields

p′ = −iωα
ρ(E − 1)SL

4πh
A′. (3.11)

3.5. Dispersion relation

Combining (3.4), (3.6) and (3.11), gives the dispersion relation defining the system
dynamics:

ρc cotan

(
ωL

c

)
= ωα

ρ(E − 1)SL

4πh

Ā

ūP
G(ωr ) eiϕ(ωr ) +

ωρl

P

[
1 +

lν

rp

(1 + i)

]
, (3.12)

which may be cast in the functional form:

H(ωr + iωi) = F(ωr ), (3.13)

where

H(ω) =
4πh

αω

ūP

(E − 1)Ā

c

SL

(
cotan

(
ωL

c

)
− ωl

cP

(
1 +

lν

rp

(1 + i)

))
, (3.14)

and F(ωr ) is the flame transfer function given by (3.6). For a given set of parameters
and a known flame transfer function F, the roots ω of (3.13) with a positive imaginary
part ωi correspond to linearly unstable situations. While useful, this type of linear
analysis (Noiray et al. 2006, 2007) cannot provide the saturation amplitude level at the
limit cycle reached under unstable operating conditions. The purpose of the following
sections is to investigate the nonlinear features of the resonant coupling described in
this study.
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4. Nonlinear approach and flame describing function
Among the various theoretical methods which have been explored to take into

account nonlinearities in ‘acoustic–combustion’ instabilities one may distinguish two
general groups. The first relies on a Galerkin projection on the modes of the system
and has been extensively used to investigate nonlinear acoustics as the mechanism
responsible for amplitude saturation (e.g. Zinn & Lores 1972 and Culick 1994). In
the second group there is a large set of models which consider that combustion
is the central nonlinearity and constitutes the key element governing the system
dynamics and setting limit-cycle parameters (e.g. Dowling 1997, 1999). The present
analysis belongs to this second group. Unlike many previous studies which are mainly
theoretical, the present approach relies on experiments to highlight the flame dynamics
nonlinearities. This is accomplished in the first part of this section. It is shown that this
is conveniently represented by a describing function. It is then shown that the flame
describing function (FDF) can be effectively used to develop a nonlinear analysis
of the system in the frequency domain through the nonlinear dispersion relation
(NDR) introduced later in the paper. Theoretical results are detailed in the last
part.

4.1. Amplitude-dependent flame transfer function

Measurements of the flame transfer function defined in (3.5) and (3.6) are carried out
by simultaneously recording velocity and chemiluminescence signals in forced flow
experiments (Noiray et al. 2006, 2007). The piston is replaced by a loudspeaker to
modulate the upstream flow velocity. The velocity signal u′ at the base of one of
the flames is measured by means of laser Doppler velocimetry. The measurement
point is located 0.7 mm above the perforation, which is a small distance compared
to the flame height (� 7 mm). As mentioned previously OH∗ chemiluminescence is
proportional to the flame surface and one may write A′/Ā= I ′

OH∗/ĪOH∗ because the
mixture equivalence ratio is held constant (Schuller et al. 2002). The OH∗ light intensity
is obtained by means of a photomultiplier equipped with a suitable narrowband filter.
The driving frequency is swept over the range 0–1200 Hz in 50 Hz steps. For each
forcing frequency f the normalized ratio between fluctuating OH∗ light emission and
velocity provides the gain G(f ) and the phase ϕ(f ) of the flame transfer function for a
fixed level of modulation. Transfer functions measured for different driving amplitudes
|u′| are plotted in figure 6. The root-mean-square amplitude u′

rms is calculated at the
fundamental frequency f determined by taking the Fourier transform of the velocity
signal. The whole frequency range 0–1200 Hz cannot be completely explored because
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the driver unit efficiency is reduced in the upper frequency range for high modulation
levels. We observe that for each value of the driving amplitude, the gain G and
the phase ϕ respectively have the same general behaviour. The gain curves indicate
that the flame collection acts as a low-pass filter with a visible overshoot in the low
frequency range (see figure 6a). This filtering effect increases as the forcing level is
increased. The phase (figure 6b) evolves in a quasi-linear fashion which is characteristic
of time-delayed systems. This retarded action may be explained by introducing the
time lag τc between the flame response and the velocity modulation at the flame base.
For a constant lag the phase increases linearly with frequency ϕ = ωτc. This delay
corresponds to the mean time required by a perturbation originating at the base of
the flame to reach the entire flame surface and it may be approximated by βhf /ū,
where β is a constant factor and hf is the flame height (Matsui 1981). Experiments
indicate that β is about 1/3 for relatively weak perturbation levels (see Ducruix et al.
2000). Systems featuring retarded restoring forces are susceptible to self-sustained
oscillations, especially when the inverse of the time lag τ−1

c is of the order of the
resonant eigenfrequency f (cf. Minorsky 1962, chap. 21).

It is interesting now to examine the influence of the modulation velocity amplitude
on the gain and phase of the transfer function. Figure 6(a), shows that both gain
and phase exhibit a strong dependence on the driving velocity level. The gain G

drops as the excitation velocity amplitude u′
rms/ū is increased. It is important to

remember that the normalized ratio given in (3.5) is calculated using the fundamental
components of the power spectral densities of light emission and velocity fluctuation
signals. Power contained in the other components of the spectrum is not taken into
account because we assume that harmonics do not effectively determine the self-
sustained oscillation mechanism. This assumption underlies the ‘describing function’
or ‘equivalent harmonic’ formalism of control theory. In essence, the gain of the
transfer function is a function of both the frequency and amplitude level of the
modulating velocity.

In the present case the phase of the transfer function is also a function of the input
level. According to figure 6(b) the slope of ϕ with respect to frequency increases with
the relative ratio u′

rms/ū, indicating that the delay τc increases with the input level. This
mechanism may be qualitatively explained using the relation τc = βhf /ū. Under high
perturbation amplitudes, the flame loses its conical shape and features an elongated
cylindrical base. As a consequence, the proportionality coefficient β increases from
1/3 to about 1/2.

The amplitude dependence of the flame transfer function is formally expressed by
writing that F depends explicitly on the input level |u′|:

F(ωr, |u′|) =
A′/Ā

u′/ū
= G(ωr, |u′|)eiϕ(ωr ,|u′ |). (4.1)

It is appropriate here to use the designation ‘flame describing function’ (FDF) instead
of flame transfer function (FTF). This distinction is already apparent in some previous
theoretical studies (e.g. Dowling 1997). Other interesting studies concerning nonlinear
flame response have been carried out either by measuring the dependence of the
flame transfer function on the input level (Balachandran et al. 2005; Bellows et al.
2007; Birbaud et al. 2007) or by analytically modelling the nonlinear flame response
(Lieuwen (2005)) or by using turbulent combustion CFD (Armitage et al. 2006).
Many of these studies also indicate that the gain drops as the input level increases, in
agreement with what is observed in figure 6(a). However, results obtained in previous
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studies concerning the phase evolution as a function of the amplitude level are less
straightforward than those found in the present investigation.

It is also worth noting that in the present conguration, the reaction zone is
compact compared to the acoustic wavelengths considered. This is not always the
case in practical systems. In such situations, it might be better to use locally defined
FDF gain and phase, as recently done in the FTF framework (e.g. Martin et al. 2006
or Kang, Culick & Ratner (2007)).

4.2. Nonlinear stability analysis

The dispersion relation (3.13) has been solved by Noiray et al. (2006) in a linear
framework using a flame transfer function which was assumed to be independent of
the input velocity amplitude. It is however clear that the amplitude level changes the
flame response as highlighted in the previous subsection. It is thus more appropriate
to use the describing function as determined previously as a function of input level
|u′|. The level of relative velocity fluctuation will be used instead of the absolute value
and it will be expressed in terms of the root-mean-square u′

rms/ū. It is now convenient
to cast (3.13) in the following fashion:

H(ωr + iωi) = F(ωr, |u′|), (4.2)

where F is defined by (4.1). The dispersion equation now also depends on the
amplitude of velocity oscillation and will be designated the nonlinear dispersion
relation (NDR). It is necessary to have a well-resolved FDF in order to find the
roots ω of the NDR as a function of the normalized driving amplitude u′

rms/ū. This
is accomplished by interpolating the experimental FDF data and extrapolating this
function where experimental samples are missing. Results of this operation are plotted
in figure 7 as a function of amplitude and frequency. The interpolation is adequate in
regions where data are available; it is less reliable in the high amplitude range which
is not easily accessed experimentally. In this region, the FDF is simply extrapolated.
This interpolated FDF is now used to develop a nonlinear analysis of the resonant
coupling. This is carried out in the frequency domain, which considerably simplifies
the analysis of systems with delays of the present type. The roots of the nonlinear
dispersion relation are computed with a continuation algorithm.

For each duct length L and eigenmode f (n) = (2n − 1)c/4L characterized by an
integer n, equation (4.3) corresponding to the modulus of the NDR (4.2) should
be solved to find the complex roots (ωr , ωi) as a function of the driving velocity
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amplitude |u′|:
|H(ωr + iωi) − F(ωr, |u′|)| = 0. (4.3)

The Nelder–Mead simplex method is used to determine the eigenfrequencies. This
method provides the coordinates (ωr,∞,ωi,∞) of a local minimum of the quantity on
the left-hand side of (4.3) from an initial input coordinate (ωr,0, ωi,0). Except for the
first length L under consideration, the initial inputs (ωr,0, ωi,0) result from previous
calculations and the root search algorithm employs a continuation methodology.
The first solution of (4.3) is obtained by starting from ωr,0 = (2n − 1)πc/(2L), which
corresponds to a pure quarter-wave eigenfrequency, and ωi,0 = 0. The search stops
when the local minimum coordinates obtained do not change by more than 10−6.
It has been checked that for each iteration, the resulting local minimum |H(ωr,∞
+ iωi,∞) − F(ωr,∞, |u′|)| is lower than 10−3.

Computations provide roots (ωr ,ωi) as a function of u′
rms/ū for a large number of

lengths L and are calculated for the first three eigenmodes of the system.

4.3. Theoretical results

The above algorithm is now used to examine how growth rates ωi are affected by the
input level of oscillation. As observed by Minorsky (1962), the fundamental idea is that
in all nonlinear oscillations, the amplitude and the frequency are interrelated, whereas
in the linear case they are independent of each other. It is shown here that two types
of trajectories can be distinguished in an amplitude–frequency state space. A number
of such trajectories are calculated and plotted for the first eigenmodes of the system.

4.3.1. Growth rate and oscillation amplitude

Systematic calculations of the growth rate indicate that there are two main types
of trajectories in the amplitude–frequency state space. Type 1 trajectories exemplified
in figure 8 feature a positive growth rate for small amplitude levels. The diagram
starts at a relative amplitude of 0.1 because the flame describing function was not
measured below that value. However, one may expect that very small changes will
take place in the range 0 <u′

rms/ū < 0.1. The growth rate evolves from this initial value
and eventually vanishes for a finite amplitude. The corresponding amplitude defines



154 N. Noiray, D. Durox, T. Schuller and S. Candel

(a) (b)

300 400 500 600 700

0.3

0.4

0.5

0.4 0.6

300

400

500

0.2

–100

100

–100

100

c
4L

f

Limit
cycle

Triggering
point

f

ωi

fu′rms/u

u
′ rm

s/
u

ωi

Figure 9. Type 2 state-space trajectory: positive growth rate from a threshold amplitude of
the velocity perturbation |u′|0 (�) and vanishing growth rate ωi at the limit cycle point (�)
which corresponds to the saturation amplitude |u′|1. This trajectory corresponds to L = 0.20m
and to the first mode (c/4L). Thin arrows with open arrowheads indicate the direction of
temporal evolution of the system. Left and right bold arrows show the respective scales.

an oscillation state which can be maintained as a limit cycle. It is shown later that
the stability of this limit cycle should also be carefully examined because nonlinear
interactions with another mode may prevail and may destabilize this oscillation to
another state.

Type 2 trajectories (see the example given in figure 9) feature a negative growth
rate for infinitesimally small amplitudes, indicating that the corresponding operating
conditions are linearly stable. For many type 2 trajectories (type 2a) the growth
rate remains negative when the amplitude is below a certain threshold value |u′|0
(square symbols in figure 9a, b). The growth rate then becomes positive and finally
vanishes for a higher input perturbation level (ωi > 0 when |u′|0 < |u′| < |u′|1). This
case exemplified in figure 9 corresponds to a linearly stable operating condition (i.e.
a non-oscillating equilibrium), but to a nonlinearly unstable situation because an
oscillation could be triggered by a perturbation level exceeding a certain threshold.
This would then evolve into a limit cycle featuring a finite level of oscillation with an
amplitude |u′|1.

Other type 2 trajectories (type 2b) begin with a negative growth rate for very
small amplitude levels but the growth rate remains negative for all amplitude values.
The system is then linearly and nonlinearly stable. For nearly all burner sizes L

investigated, there is at least one of the three first modes featuring a type 1 or type
2a trajectory. A narrow range of lengths L feature type 2b trajectories for each of the
three first modes but this stable domain (non-oscillating equilibrium) is reduced to a
thin band of burner sizes as shown later in the paper and in previous linear analysis
(Noiray et al. 2006). It turns out that the combustion regime is unstable over most
burner sizes.

Note also that the evolution of the frequency f as function of the incoming velocity
perturbation amplitude |u′| systematically occurs in the vicinity of one of the quarter-
wave eigenmodes as shown in figures 8(b) and 9(b). A selected set of trajectories
is plotted in figure 10. Values of ωi are given as a function of frequency f and
burner size L. They are represented in terms of the relative amplitude level by a
greyscale. The plot only shows the positive branches of the trajectories. In this plot
type 1 trajectories may be distinguished because they begin with very small amplitude
levels shown in dark grey. It is possible to identify in this plot ranges of instability
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and the corresponding modes of oscillation. For certain ranges of L there are two
possible trajectories featuring positive growth rates. Mode selection is in that case
conditioned by the method used to reach the operating point. This is examined below
by continuously changing the burner size which serves to scan the various bifurcation
possibilities.

It is also informative to use the previous data to derive the bifurcation or state-
space diagram displayed in figure 11. This is achieved by plotting the growth rate
contours with respect to the parameter L and relative amplitude u′

rms/u.
The three modes are identified by different colours. Boundaries of the different

unstable regions correspond to a vanishing value of ωi . Inner contours pertain to
positive growth rates and one observes that ‘unstable’ regions are mainly distinct
with some overlap. This is also apparent in two of the slices plotted on the right of
figure 11 showing the distribution of ωi as a function of relative amplitude of velocity
fluctuations. For a fixed cavity size L1 = 0.21 m the second mode features a positive
growth rate for small amplitude values, indicating that this mode is linearly unstable.
The first mode on the other hand is linearly stable but nonlinearly unstable. One
may infer that this mode will arise if the flow is perturbed by a finite-amplitude pulse
strong enough to bring the system above the threshold. Another possibility could
be to first establish the oscillation, for example at a value L0 corresponding to a
linearly unstable situation, and then continuously change L to reach L1 the desired
point of operation. It will be shown below that the two possible stable limit cycles
predicted from this diagram are confirmed by experiments in which L is changed in
a continuous fashion while keeping the combustion process active.

For a cavity length L3 = 0.6 m the third mode is linearly unstable and we expect
that this mode will appear. According to the diagram, the growth rate will eventually
decrease as the amplitude increases. The type 1 trajectory crosses a type 2a trajectory
corresponding to the second mode. One may expect that mode switching will take
place at that point and that the oscillation frequency will jump from a value
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corresponding to the 5/4 wave mode to that of the 3/4 wave mode. This phenomenon
will be exemplified below by analysing the temporal growth of oscillations for this
cavity length.

The behaviour predicted for a length L2 = 0.43 m is more straightforward. In this
case the system is linearly unstable. The second mode arises and its final amplitude
corresponds to the crossing-point of the vertical line with the ωi =0 contour. It will
be shown later that the predicted amplitude is in good agreement with that observed
in the experiment.
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To complement the above interpretation it is useful to plot the previous data
together with information on the frequency f . The system is characterized by its size
L and its operating frequency and amplitude level. A state-space diagram is plotted
in figure 12 delimiting the various positive growth rate regions which are coloured to
distinguish the overlapping mode regions. An extrapolation operation has been used
to extend the diagram to vanishing amplitude levels. All solid and dashed boundaries
correspond to ωi =0. In two cases the boundary features a turning point with respect
to L. This critical point separates the two branches composing the boundary. The
upper branch plotted as a solid line is the locus of stable limit cycles as can be seen
by noting that if the system is brought to a point below this branch, the growth rate
becomes positive and the amplitude increases bringing the system back to the initial
equilibrium. If on the other hand the system is brought to a point located above
that branch, the growth rate becomes negative and the amplitude is reduced until the
initial equilibrium is reached. A similar reasoning can be used to show that the lower
branches represented by dashed lines pertain to unstable limit cycles.

Figure 12(b) shows the oscillation frequency expected at the limit cycle. However,
the stable equilibrium states predicted in these diagrams are not always reachable
because the different modes may interact. Solid lines in figure 12 give the possible
oscillation characteristics but the limit cycles observed experimentally also depend
on the overlap between unstable regions and on initial conditions and methods used
to change the bifurcation parameter L. This will be discussed and compared with
experimental data below.

4.3.2. Saturation mechanisms at limit cycles

It is interesting to interpret what has been found previously in terms of an extension
of the impedance concept. In the linear regime, one may examine the combustion
response to incoming perturbations in terms of an acoustic impedance which is
calculated by taking the ratio of the pressure to velocity fluctuations. When applied
to the flame region, the real part of this ratio corresponds to the acoustic resistance
Rf = Re(p′/u′) and indicates the direction of energy flow. If Rf is positive, energy is
dissipated in the combustion region, while a negative equivalent resistance indicates
that the flames feed acoustic energy into the upstream manifold. This was used
by Noiray et al. (2007) to examine the system stability. In that analysis the flame
transfer function was determined at one fixed level of modulation typical of the values
observed experimentally. It is now useful to generalize this method and make full use
of the flame describing function concept. This ratio is calculated in the FDF sense by
using the fundamental components of pressure and velocity fluctuations. This yields
an effective impedance ZF = p′/u′ which may be obtained by combining (3.11) and
(4.1). The effective resistance RF may be cast in the form

RF = Re(ZF ) = Re

(
p′

u′

)
= N(ω, |u′|) sin(ϕ(ωr, |u′|))

where

N(ω, |u′|) = ωα
ρ(E − 1)SL

4πh

Ā

ū
G(ωr, |u′|).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.4)

where N is a positive factor and the resistance sign strictly depends on the FDF
phase ϕ. Acoustic energy is fed by the unsteady flames into the upstream manifold
when the resistance is negative. Perturbation amplification leading to self-sustained
oscillation is only possible if the FDF phase ϕ belongs to the interval [π, 2π] modulo
2π. This criterion written for the heat release rate and velocity oscillations at the
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Figure 13. Calculated state-space trajectories superimposed on FDF contours. �, �, �, and
� respectively stand for typical trajectories belonging to groups (I), (II), (III) and (IV).

burner outlet corresponds to the Rayleigh criterion, which indicates that thermo-
acoustic coupling is enhanced within a system when the pressure–heat release rate
phase angle is between −π/2 and π/2 modulo 2π. The proposed relation is the direct
transposition of the Rayleigh criterion to unconfined systems where a compact flame
is at the boundary of a resonant cavity (Schuller et al. 2003a).

An additional condition should be satisfied to trigger resonance. The acoustic
energy flux released by the flames should be greater than that dissipated in the
system. In the present configuration, dissipation is weak because the perforated plate,
which is the main damping element, is very thin (Noiray et al. 2007) and the first
criterion relative to ϕ prevails.

It is now possible to plot trajectories calculated from the NDR analysis for a given
burner size and a predetermined mode in the state space together with the gain and
phase of the FDF. This is done in figure 13 for a few examples. This superposition
can be used to identify four different groups of trajectories.

In the first group (I) the initial point is at a finite amplitude and the system
reaches a limit cycle when the gain approximately vanishes. The gain is in fact greater
than zero to compensate for dissipation effects which are quite small in the present
situation. The trajectory belongs to the type 2a class with an amplitude limited by
the FDF gain. This trajectory is only possible when the necessary condition for the
FDF phase is fulfilled (ϕ belongs to [π, 2π] modulo 2π). This is clearly shown on
figure 13(b) where the initial point is located on the boundary corresponding to a
value of π, underlining the fact that type 2a trajectories result from an FDF phase
effect because ϕ is amplitude dependent.

In the second group (II) the trajectory begins at a small amplitude and therefore
belongs to the type 1 class. The necessary condition for the phase is satisfied along
the trajectory. The limit cycle is reached when the gain nearly vanishes. There are
however some deviations in practice because (i) dissipation in the system is larger
than that included in the analytical model and (ii) it may also depend nonlinearly
on the amplitude. As a consequence the gain will remain at a finite but low value
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Figure 14. Collection of calculated state-space trajectories superimposed on FDF contours.
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to compensate these effects. For this class of trajectory, limit cycles are determined
by the balance between acoustic energy gain and loss processes in accordance with a
standard explanation of saturation mechanisms (e.g. Culick (2006)).

The third group (III) also includes type 1 trajectories beginning at very small
amplitude levels but the limit cycle is now obtained when the phase has reached a
value of 2π. In this case the gain does not vanish at the limit cycle and the saturation
amplitude is fixed by the FDF phase criterion. Trajectories belonging to the fourth
group (IV) are similar to those of the second group but the phase condition is
now fulfilled in the second instability band [3π, 4π]. Having identified these different
possibilities we may now plot a wider collection of tracks in the state space (figure 14).
This diagram indicates that oscillating equilibria at the limit cycles are the outcome of
the four different processes described above. This is independent of the mode number
except for group (IV) trajectories which are only sustained by the second mode.

5. Comparison between theory and experiments
A comparison is now carried out between estimates obtained above and

experimental data. It is worth noting at this point that velocity fluctuations are
measured at a small distance from the plate while theoretical calculations use
velocity perturbation at the flame base. The error is however quite small since
the burner behaves nearly as an open-ended tube and features quarter-wave-type
eigenmodes with a velocity anti-node near the plate. One can safely say that the
velocity perturbation does not change by much over a short distance and that the
comparison may be carried out on a quantitative basis. The velocity signal in what
follows is acquired by a hot wire located 2 cm upstream of the perforated plate (see
figure 1).

There are many possible ways of testing the theory. It is natural to begin by
analysing time records and looking at the amplitude–frequency characteristics of an
oscillation during its evolution to the limit cycle. This study, carried out by fixing the
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Figure 15. Evolution to a limit cycle. (a) Measurements of the flow velocity by means of a
hot-wire probe placed 2 cm upstream of the perforated plate (see figure 1), L is fixed to 0.49m.
The upper box shows the temporal evolution of the total velocity and the same signal filtered
and normalized by the mean velocity. The lower box displays the corresponding short-time
Fourier spectral density in the frequency band of interest (470–530Hz). Spectral resolution
	f =8 Hz. (b) Comparison between NDR analysis predictions of the frequency shift as a
function of the oscillation level (–�) with ‘amplitude–frequency’ couples (�) extracted from
the short-time Fourier analysis of the experimental signal. � shows the predicted saturation
amplitude (ωi = 0). The evolution shown in (b) is similar to that illustrated in figures 8(a)
and 8(b).

burner length, igniting the system and recording its evolution, is typified in figures 15
and 17. These two figures show the velocity signal detected by the hot wire which
includes the mean value u and its fluctuation u′. This signal is filtered and normalized
to obtain the signal of relative fluctuations u′/u. A short-time Fourier analysis is
used to obtain the spectral density as a function of time, which is plotted on a grey
scale in the frequency band of interest. The frequency–amplitude information is then
extracted from the power spectral density and plotted on figures 15(b) and 17(b)
together with predictions deduced from the NDR analysis.

In figure 15, the second mode (3/4 wave) grows progressively and reaches a limit
cycle at a fairly large level of fluctuation (u′

rms/u � 0.5). At the same time a frequency
shift is observed experimentally. The oscillation begins at 530 Hz and stabilizes
around 500 Hz. This perfectly matches the theoretical prediction and an excellent
agreement is obtained for the saturation amplitude. Note that this frequency shift in
the vicinity of the pure quarter-wave eigenfrequencies is characteristic of a nonlinear
perturbation amplification. It corresponds to the bell-shaped tracks in figure 10.
Another interesting representation of this temporal evolution is given in figure 16.
This phase-plane portrait is deduced from the normalized filtered velocity signal
displayed in figure 15. It shows a regular evolution of the system as the trajectory
begins near the origin and approaches the limit cycle.

The second case displayed in figure 17 illustrates the mode switching phenomenon.
The case of a cavity length L3 = 0.6m was studied in figure 11. The calculation
indicates that two trajectories cross each other and that mode switching can take
place. This is indeed observed as the oscillation begins around 700 Hz and involves
the third mode (5/4 wave). When the amplitude reaches a certain level the frequency
suddenly drops to 440 Hz and the system switches to the second mode which then
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Figure 16. Phase-plane portrait corresponding to the filtered normalized velocity signal
recorded by means of the hot wire-probe and displayed in figure 15.
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Figure 17. (a) Experimental measurements of the flow velocity by means of a hot-wire probe
placed 2 cm upstream of the perforated plate (see figure 1), L is fixed to 0.6 m. The upper box
shows the temporal evolution of the flow velocity and the same signal filtered and normalized
by the mean velocity. The lower box displays the short-time Fourier spectral density of this
signal in the frequency band of interest (400–800Hz) with a spectral resolution of 	f = 8 Hz.
(b) Comparison between predictions from NDR analysis (–� and �–�) and ‘frequency–
amplitude’ couples (�) extracted from the short-time power spectral density. The symbols (�)
only show the dominant oscillation in the time record. Triggering of the low-frequency mode
takes place when the relative velocity amplitude of the high-frequency mode reaches 0.35.

evolves to a limit cycle. Examining the details of this mechanism one finds that
switching at a finite amplitude becomes possible because the second mode fulfils
the phase condition and its growth rate exceeds that of the third mode at the
threshold amplitude. This behaviour is typical of a nonlinearly unstable system which
features a variety of eigenmodes. The corresponding phase-plane portrait given in
figure 18 highlights the presence of two distinct attractors. The system reaches the
first attractor but the amplitude becomes sufficiently large to allow the system to
switch to the second mode and then to evolve to the second attractor.
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Figure 18. Phase-plane portrait corresponding to the filtered normalized velocity signal
recorded by means of the hot-wire probe and displayed in figure 17.

0.2 0.4 0.6
0

0.2

0.4

0.6

500

1000

1500

LL

f

Ignition point

Ignition
point

(a) (b)

0.2 0.4 0.6
0

0.2

0.4

0.6

500

1000

1500

u
′ rm

s
/u

Figure 19. Comparison between measurements (symbols) and NDR analysis results (solid
lines) of limit-cycle amplitudes and frequencies obtained by progressively changing the burner
size L. Modes 1, 2 and 3 are respectively identified by �, � and �. Bold solid lines: limit cycle
predicted by direct reading of the bifurcation diagram presented in figure 12 (reading from
left to right for (a) and from right to left for (b)). Thin solid lines: stable equilibria of the
different modes considered in isolation. (a) An experiment in which combustion is initiated
for the smallest value of L, which is progressively increased while combustion is maintained.
(b) An experiment in the reverse direction (burning is initiated at the largest burner size and
L is progressively reduced).

It is interesting now to sweep the state space and compare amplitude and frequency
predictions with experimental data. This is accomplished by igniting the system at an
initial cavity length and continuously changing L to explore the range of accessible
sizes. This can be done in two directions (see figure 19). One may begin with a low
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value of L and increase it or one may start with a large value and decrease it. Results
are plotted in figures 19(a) and 19(b) respectively. Globally, the predicted limit-cycle
amplitudes and frequencies are in good agreement with experimental data. Examining
figure 19(a) shows that mode 1 appears first as expected at the ignition point which
is linearly unstable (see figure 12), its amplitude increases with increasing L, reaches
a maximum and decreases at the turning point (L = 0.25 m). There is a very narrow
stable region. As L is increased the supercritical bifurcation featured by the second
mode appears. The level of oscillation increases, reaches a maximum (at L � 0.5 m)
and then decreases near the turning point and the oscillation switches to the third
mode.

Looking now at figure 19(b), the third mode is initiated first, its amplitude initially
increases, then decreases at a point where mode hopping takes place (L = 0.6 m). The
oscillation amplitude then jumps to a higher level and triggers mode 2. Decreasing
L still further induces a decrease in the amplitude of this mode which vanishes at
the supercritical bifurcation at L =0.28 m. A stable region is reached in this way. A
further decrease of L gives rise to the second mode at a fairly high frequency which
persists over the predicted range of burner sizes. Mode 1 is then triggered at a higher
amplitude and the oscillation then decreases from 1500 Hz to about 500 Hz.

The hysteresis phenomenon observed experimentally is fairly well retrieved by
theory. This has already been discussed for figure 11 and it was indicated that for
L1 = 21 cm there were two possible stable oscillating equilibria for the same burner
size. Notice also however some differences between predicted and measured oscillation
frequencies and limit-cycle amplitudes in different regions of the diagram. This may
be explained by considering that the perforated plate temperature, which increases
with time, could slightly modify the flame anchoring dynamics and thus the FDF.

Finally it is interesting to combine experimental and theoretical results to propose
a complete bifurcation diagram for this system showing the various branches, turning
points and possible transitions between the different modes (see figure 20):

(i) (LB), (EG), (RI) and (CD) are stable limit-cycle branches corresponding to
modes 1, 2, 3 and 2 respectively,

(ii) (DB) and (GK) are unstable limit-cycle branches,
(iii) (CE) corresponds to an oscillation-free stable range,
(iv) (IJ) is a stable limit-cycle branch but is not accessible because the growth rates

of mode 2 oscillations bring the system to the (EF) branch,
(v) B and G are turning points, separating stable and unstable branches.
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6. Conclusion
A major result of the present study is that nonlinear combustion oscillations can be

analysed by making use of the flame describing function (FDF) framework. A unified
method of analysis is proposed which consists of inserting the FDF in the system
dispersion relation and determining modal growth rates and modal frequencies as
a function of the perturbation amplitude level. Information obtained in this way is
much richer than that deduced from more standard linear stability analysis. It is
then shown that one can extract amplitudes of oscillation and frequencies at the
limit cycles. It would also be possible to reconstruct predicted time evolutions of the
fluctuating quantities by means of these frequency-domain results.

It is also demonstrated that the mode switching (mode hopping) phenomenon which
is often observed in practice can be interpreted in terms of growth rate evolutions with
respect to perturbation amplitude. Jumps in frequencies are found to occur when the
amplitude has reached a value at which the growth rate curve of one mode surpasses
that of the mode which prevailed until that point.

Instability can also be triggered when the growth rate of a specific mode is negative
for infinitesimal levels of perturbation and becomes positive for a finite amplitude
level. The key element responsible for triggering and hysteresis is the FDF phase
which is dependent on the driving velocity amplitude. This is specifically the case
for systems with delay, such as those found in combustion, which feature bands of
instability defined in terms of phase. Operating points which correspond to a linearly
stable situation may become unstable because the phase of the FDF changes with the
amplitude and falls in an unstable band. One may also conclude that the saturation
amplitude is either defined by an equilibrium between FDF gain and system loss or
by a shift in FDF phase.

These various aspects are illustrated in the case of a well-controlled system
comprising an upstream manifold of variable length. It is demonstrated in particular
that bifurcation diagrams showing the amplitudes of oscillation at the limit cycles
are suitably well predicted with this method. This unified framework requires the
determination of the FDF which can be extracted from systematic experiments or
from numerical simulations and which depends on the configuration investigated.

It might also be interesting to adopt the describing function methodology to account
for nonlinear dissipation mechanisms, which are weak in the simplified geometry
considered in this study, but could be more important in practical applications. A
dissipation describing function (DDF) could then be introduced in the analysis.

The present study is based on a bifurcation parameter related to the system
geometry: the burner size L. Similar developments could be made by investigating
other parameters while keeping a fixed geometry, such as the flow rate or equivalence
ratio which define the flame dynamics. In such a situation to a flame describing
function would have to be defined depending on the mass flow rate or equivalence
ratio and fluctuating velocity amplitude. The present analysis developed in a simple
configuration has more generality and could be used in more complicated situations.

This work has been partially supported by DGA. S.C. is also with Institut
Universitaire de France.
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